• 感谢赞赏!给好友秀一下吧

    内容棒,扫码分享给好友

  • 评论
  • 点赞

美术高考提高数学成绩方法大全!不信你试试

       很多美术生对数学感到头疼,成绩也很感人,不知道要拿它怎么办简直又爱又恨。离今年的高考只有100多天了,不少小伙伴们反应说很着急,怎样才能把数学提上去,使美术高考获得一个理想的成绩,所以 美术饭去给大家搜方法去啦,希望对你们有用。


       数学做题时,有一些“条件反射”你应该记住,这能帮你极大地节省时间!掌握解题思路和方法非常重要,这会让你在面对复杂问题时游刃有余。以下是19大数学答题方法和6大解题思想,赶快收藏吧!



一、大答题方法


1.函数

看函数题目,先思考后,建立三者之间的联系。考虑定义域,其次运用“三合一定理”,试试瞧。


2.方程或不等式

如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法。


3.初等函数

面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴……。


4.选择与填空中的不等式

选择与填空中出现不等式的题目,优选特殊值法。


5.参数的取值范围

求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。


6.恒成立问题

恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。


7.圆锥曲线问题

圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。


8.曲线方程

求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。


9.离心率

求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。


10.三角函数

三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围。


11.数列问题

数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想。


12.立体几何问题

立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题。


13.导数

导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上。


14.概率

概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径。


15.二项分布

注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等。


16.绝对值问题

绝对值问题优先选择去绝对值,去绝对值优先选择使用定义。


17.中心对称

关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。



二、5大解题思想


1.函数与方程思想


函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。


而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。


2.数形结合思想


数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。


解题类型:


①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。 


②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。 


③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。


分类讨论思想


分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。


解决分类讨论问题的关键是化整为零,在局部讨论降低难度。


常见的类型:


类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;


类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;


类型3:由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;


类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。


类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。


分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。


分类的原则:分类不重不漏。


3.特殊与一般思想


用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。


4.极限思想


极限思想解决问题的一般步骤为:


一、对于所求的未知量,先设法构思一个与它有关的变量;


二、确认这变量通过无限过程的结果就是所求的未知量;


三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。


掌握数学解题思想是解答数学题时不可缺少的一步,建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题目加以划分,以便在考试中游刃有余。


考好美术专业考试,再加上高考不错的文化课成绩,那就美滋滋了不是,所以加油加油加油鸭!


美术高考表情包——美术饭

0
推荐阅读
艺考高考分数如何计算?艺考生必须知道的高考分数算法!
美术高考集训干货分享:素描头像之嘴巴的骨骼与肌肉分析!
五官局部 |鼻子专题 2-2-2.鼻子的骨骼与肌肉分析
干货 | 单人速写基础之起形抓形的技巧
【素描干货】四分之三男中年素描头像的细节刻画
素描单体梨很好画?分解看,更好画!

说点什么

热门评论

最新评论